
Journal of Engineering Mathematics38: 427–438, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

Diffusion-controlled smoulder propagation in a composite slab
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Abstract. The steady propagation of a thin smouldering front parallel to the faces of a composite reactive slab
has been considered. The slab consists of a double layer of solid with differing densities. As the smouldering front
progresses into the solid it leaves behind an inert porous medium through which oxidizer is able to diffuse to the
front. It is assumed that the reactive solid is sufficiently dense for no oxidizer to be present. The oxidizer concen-
tration on one face of the slab is specified, the other being impervious to the transport of reactants. Dimensionless
equations and boundary conditions are obtained for the concentration of oxidizer in the porous medium. These
are solved to first order by use of a complex-variable method and a hodograph transformation giving the shape of
the smouldering front for various parameter combinations. The analysis is extended to the case where the layers
are of unequal thickness. Simple expressions for the shape of the front and the oxidizer concentration are obtained
when one layer thickness is large. The model here considered is a first step in a more comprehensive analysis of
smouldering in a non-uniform medium.

Key words: smoulder propagation, diffusion control, double layer

1. Introduction

Smouldering is a combustion process that lies between the extremes of negligible exother-
mic reaction and flame-like burning. Such process is usually controlled by the rate at which
oxidizer is able to reach the combustion zone. Smouldering leaves a porous solid remainder
through which the oxidizer is able to pass by diffusion, convection or both.

Although smouldering is a complicated physical and chemical process (see Drysdale [1]), it
can be represented by the progression of a thin reaction front through a solid which is sustained
by oxidizer diffusion from a bounding surface (see Ohlemiller [2]). There is considerable
experimental evidence that such a model is physically realistic (see Beever [3]).

An asymptotic theory of steady smouldering in a half-space has been considered previously
by Adler and Herbert [4]. Here a thin reaction zone propagates parallel to a plane surface on
which a constant oxidizer concentration is maintained. The solid fuel into which this zone
propagates is assumed to be sufficiently dense for no oxidizer to be present. To first order, the
shape of the reaction front is found to be parabolic, a consequence of the condition at the front
where the concentration of oxidizer vanishes and where the rate of oxidizer supply balances
the rate at which solid fuel is being consumed. The paper of Adler and Herbert contains
references to earlier studies of smouldering and to related work.

The theoretical problem of smouldering in a semi-infinite solid fuel gives rise to a free-
boundary problem, namely, the position of the reaction from must be determined as part of
the solution. Kerr [5], has devised a numerical scheme for obtaining the shape of this front
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and the oxidizer concentration behind it. The work also considers other plane surface oxidizer
concentrations and confirms the previous theoretical analysis [4].

The previous papers [4, 5] have only been concerned with the oxidizer concentration be-
hind the front. The asymptotic temperature distribution has been determined by Herbert, Kerr
and Adler [6]. The technique used was to integrate the equations for temperature and oxidizer
concentration across the smouldering front to obtain jump conditions which relate the changes
in these quantities to the assumed strength of the line heat sources on the front. The asymptotic
temperature distribution is then found from the known oxidizer distribution.

The experimental work of Ohlemiller on polyurethane foam has shown that smoulder-
ing can result in a significant volume loss. In addition, the properties of the surface of the
burnt material, specifically the surface mass-transfer coefficient for air at this surface, may
be expected to be of importance in determining the shape of the front and the distribution of
oxidizer behind it. Both these effects have been taken account of in Herbert, Kerr and Adler
[7] in which the surface of the burnt material is assumed to be of parabolic form.

Previous work has been concerned with asymptotic properties with no information as to
what happens where the smouldering front meets the plane surface. By using suitable coordi-
nate transformations, Adler and Herbert [8] investigated this region. One outcome is to show
the existence of ‘upstream influence’, namely, the oxidizer concentration at the plane surface
is no longer discontinuous but changes smoothly from its zero value on the front to its constant
value on the plane surface. This is analogous to the bending of the concentration profiles as
determined experimentally by Ohlemiller.

For smouldering in a semi-infinite region, the reduction of the conservation equation and
boundary conditions for the oxidizer results in a single dimensionless parameter. This is gen-
erally small since it contains the ratio of a gas to solid density. When a finite-thickness region,
such as slab geometry is considered, a further dimensionless group appears which contains
the thickness of the slab. A most useful parameter is the Peclet number, which is also of the
same order of magnitude, since it contains a small smoulder-propagation speed. Measured
values ofu′ are typically 10−3 cm s−1. For finite regions an added complication is that more
boundary conditions have to be satisfied, in particular, if oxidizer diffuses through opposite
parallel surfaces [9].

A different approach to the smouldering problem is contained in the work of Buckmaster
[10]. He considers a shallow wave with a finite steadily moving region of surface oxidizer flux
and solves the corresponding Dirichlet problem. The solution is then used in the differential
condition for the wave front to determine its shape. The thermal problem for slab smoulder
with free-stream convection is also considered. A comparison with the model to be presented
below is given in Section 5.1.

Previous theoretical approaches have been concerned with propagation through a uniform
reactive solid. It is known that smouldering often occurs through non-uniform materials,e.g.
earth-fill sites, peat, etc., or composite layered media having different physical and chemical
properties. Below, we consider steady propagation parallel to the surfaces of a double-layered
solid in which the reaction front is sustained by oxidizer diffusion through one of the bounding
surfaces. As in previous work a simple kinetic scheme has been considered, namely, fuel+
oxidizer→ porous solid+ gases with the appropriate oxidizer diffusivity within the porous
medium.
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Figure 1. Double layered solid with smouldering reaction front (SRF) propagating in the negativex′ direction.

2. Conservation equations

Consider the steady propagation of a thin smouldering reaction front (SRF) through a double
layer−` ≤ y′ ≤ ` of solid reactive material, with densityρ(1)f in 0 ≤ y′ ≤ ` andρ

(2)
f in

−` ≤ y′ ≤ 0. Oxidizer is assumed to diffuse fromy′ = ` to the front which propagates at a
constant speedu′ parallel to the plane surfaces, see Figure 1. The conservation equation for
the concentration of oxidizer may be written in terms of coordinates relative to the moving
front. We assume that the oxidizer concentration on the SRF vanishes and that the unreacted
solid is sufficiently dense for no oxidizer to be present. Let the two regions be denoted by (1)
and (2). Suitable dimensionless equations for the oxidizerY(x, y) in the inert porous regions
behind the front are then:
Medium (1):

p
∂Y

∂x
= ∂2Y

∂x2
+ ∂

2Y

∂y2
, 0< y < 1,

Y (x,1) = 1, x > x1,
∂Y

∂y
(x,1) = 0, x < x1,

(1)

SRF conditions:

p
dy

dx
= s1(

−∂Y
∂y
+ ∂Y
∂x

dy

dx
), Y = 0. (2)

Medium (2):

p
∂Y

∂x
= ∂2Y

∂x2
+ ∂

2Y

∂y2
, −1< y < 0,

∂Y

∂y
(x,−1) = 0, x > x2,

(3)
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SRF conditions:

p
dy

dx
= s2(

−∂Y
∂y
+ ∂Y
∂x

dy

dx
), Y = 0. (4)

Conditions (2) and (4) state that oxidizer diffusion at the front balances the rate of consump-
tion of solid reactant.

In the above equations the dimensionless variables are given by

x = (x′ + u′t ′)/`, y = y′/`, Y = Y ′/Y ′0,
p = `u′/D, si = (ρ0/ρ

(i)
f )(Y

′
0/n0),

(5)

wherex′, y′ are Cartesian coordinates,t ′ is the time,Y ′0 is the fractional surface concentra-
tion of oxidizer whose mean density isρ0, D is the diffusivity andn0 is the stoichiometric
coefficient for the solid fuel/oxidizer reaction. In (1) and (3)x1 andx2 are constants to be
determined.

Smouldering speeds are typicallyu′ ∼ 10−3 cm s−1, [1], and the constantssi in (5) are
small due to the density ratioρ0/ρ

(i)
f . Values depend on the material, but typicallysi ∼ 10−2.

For a 2 cm thickness slab and reasonable values forD, the Peclet number isp ∼ 10−1.

3. A first-order problem

We now expandY (x, y) as a power series in the Peclet numberp and setsi = p/λi, i = 1,2
whereλi are constants. The terms independent ofp in the two regions then satisfy
Medium (1):

∇2Y = 0, 0< y < 1, (6)

SRF:

λ1
dy

dx
= −∂Y

∂y
+ ∂Y
∂x

dy

dx
, Y = 0, (7)

Medium (2):

∇2Y = 0, −1< y < 0, (8)

SRF:

λ2
dy

dx
= −∂Y

∂y
+ ∂Y
∂x

dy

dx
, Y = 0, (9)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
.

We note that, althoughY (x, y) satisfies the two-dimensional Laplace equation, the coordinates
x, y are in a frame moving with the smoulder front. We now introduce the complex conjugate
Z(x, y) of this function which will be found useful in determining a solution. The Cauchy-
Riemann conditions for the two functions are

∂Y

∂x
= ∂Z

∂y
,

∂Y

∂y
= −∂Z

∂x
.
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Figure 2. Boundary values onY andZ in (x, y) plane.

From (7) and (9)

λidy = ∂Z

∂x
dx + ∂Z

∂y
dy, i = 1,2,

and hence

∂

∂x
(Z − λiy)dx + ∂

∂y
(Z − λiy) dy = 0.

If Z = 0 when y= 0, it follows thatZ = λiy on the SRF. Let ds= (dx,dy) and dn=
(dy,−dx) be line elements along and perpendicular to the SRF. The oxidizer flux through the
smouldering front is

y=1∫
y=−1

∂y

∂n
ds =

y=1∫
y=−1

∂Z

∂s
ds = Z|y=1− Z|y=−1 = λ1+ λ2. (10)

Values ofY (x, y) andZ(x, y) on the boundaries are shown in Figure 2. There is a region on
y = 1, behind the front, at which∂Y/∂y = 0. Previous work has shown that this is due to
‘upstream influence’ [8, 9].

A solution to Equations (6)–(9) may be obtained by interchanging the roles of dependent
and independent variables. The domain in the hodograph plane in which a solution to∇2y = 0
is sought is shown in Figure 3, as are the relevant boundary values ofy(Y,Z). The required
solution is

y = Z/λi + Y (1− Z/λi)+
∞∑
n=1

Bn sin(nπY ) sinhnπ(λ1− Z), (11)

where

Bn = 4(−1)n/[nπ sinhnπ(λ1+ λ2)].
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Figure 3. Boundary values ony in (Y,Z) plane.

An expression forx(Y,Z) can be found from the Cauchy-Riemann conditions∂x/∂Y =
∂y/∂Z, ∂x/∂Z = −∂y/∂Y and integration.
The results is

x = −Y 2/(2λi )+ Z2/(2λi)+ Y/λi − Z + B0

+
∞∑
n=1

Bn cos(nπY ) coshnπ(λ1− Z), (12)

whereB0 is a constant.
On the SRF,Y = 0,Z = λiy wherei = 1,2, hence the equation of the front is

x = 1

2
λiy

2 − λiy + B0+
∞∑
n=1

Bn cosh[nπ(λ1− λiy)]. (13)

If this passes throughx = 0, y = 1, (i = 1), then

B0 = 1

2
λ1−

∞∑
n=1

Bn.

Ony = 1, Y (x,1) = 1 for x ≥ xB wherexB is found by settingY = 1,Z = λ1 in (12). Thus

xB = 1

2λ1
+
∞∑
n=1

[(−1)n − 1]Bn. (14)

SinceY andZ are complex conjugates,Y=const. andZ=const. form a mutually orthogonal
system. Thus Z=const. leaves the SRF (Y= 0) at rightangles withZ able to take the values
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Figure 4. Shape of the SRF forλ1 = λ2 = 1,2, 5.

Figure 5. Shape of the SRF forλ1 = 2, 5,10 andλ2 = 1.

−λ2 ≤ Z ≤ λ1. Iso-concentration surfaces for a fixedY can be obtained from (11) and (12)
by varyingZ. The shape of the SRF, to first order, for variousλi has been calculated from
Equation (13); the results are shown in Figures 4–6.

The analysis above assumes for simplicity that the slab layers are of equal thickness; the
case of unequal layers is discussed below. By definitionλi = (`u′ρ(i)f n0)/(Dρ0Y

′
0), where

i = 1,2 refers to the upper and lower layer, respectively, andρ
(i)
f is the corresponding un-
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Figure 6. Shape of the SRF forλ1 = 1 andλ2 = 2, 5,10.

reacted fuel concentration. In Figure 4 both fuel concentrations are equal, the shape of the
smouldering front being stretched with increasingλi, in particular as the speed of smoulder
increases. Figure 5 shows how the shape of the front varies with increasing upper-layer fuel
concentration when that of the lower layer is fixed. In Figure 6 the alternative assumption is
made, namely, the lower-layer concentration varies. We note that, due to the change of fuel
concentrations in Figures 5, 6, the shape of the front is discontinuous ony = 0. Somer further
comments regarding Figures 4, 5, 6 are given in the discussion section.

4. Layers of unequal thickness

Let region (1) be 0≤ y′ ≤ ` and region (2) be−`′ ≤ y′ ≤ 0. The problem in the hodograph
plane is now similar to that considered previously but with changed boundary values. We have

∇2y = 0,

where
y = 1 whenZ = λ1, 0≤ Y ≤ 1,
y = −y0 whenZ = −λ2y0, 0≤ Y ≤ 1,
y = Z/λ1 whenY = 0, 0≤ Z ≤ λ1,

y = Z/λ2 whenY = 0, −λ2y0 ≤ Z ≤ 0,
y = 1 whenY = 1, −λ2y0 ≤ Z ≤ λ1,

(15)

where

y0 = `′/`.
The solution of problem (15) is

y = Z/λi + Y (1− Z/λi)+
∞∑
n=1

B̃n sin(nπY ) sinhnπ(λ1− Z), (16)
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where

B̃n = 2(−1)n(1+ y0)/[nπ sinhnπ(λ1+ λ2y0)].
The functionx(Y,Z), obtained from the Cauchy-Riemann conditions, is

x = −1

2
Y 2/λi + 1

2
Z2/λi + Y/λi − Z + 1

2
λ1+

+
∞∑
n=1

B̃n[cos(nπY ) cosh(nπ(λ1− Z))− 1]. (17)

The equation of the SRF is here

x = 1

2
λiy

2 − λiy + 1

2
λ1+

∞∑
n=1

B̃n[cosh(nπ(λ1− λiy))− 1]. (18)

Below we examine some particular cases.

5. Some particular cases

5.1. THE CASEy0→ 0

Fory0→ 0 the problem reduces to smoulder propagation in a uniform slab of thickness`with
a specified oxidizer concentration on one surface and insulation on the other. The result for
y0 → 0 also gives the symmetric solution in a half-slab of twice the thickness with oxidizer
diffusion through both plane surfaces.

For`′ → 0, ` finite, the functionsY,Z are given parametrically by

y = Z/λ1+ Y (1− Z/λ1)+
∞∑
n=1

B̂n sin(nπY ) sinhnπ(λ1− Z) (19)

x = −1

2
Y 2/λ1+ 1

2
Z2/λ1+ Y/λ1− Z + 1

2
λ1+

+
∞∑
n=1

B̂n[cos(nπY ) cosh(nπ(λ1− Z))− 1]. (20)

where

B̂n = 2(−1)n/[nπ sinh(nπλ1)].
The equation of the SRF becomes

x = 1

2
λ1(1− y)2 +

∞∑
n=1

B̂n[coshnπλ1(1− y)− 1] (21)

and this meets thex-axis where

x = x0 = 1

2
λ1+

∞∑
n=1

B̂n[coshnπλ1− 1]

= 1

2
λ1+ 2

∞∑
n=1

(−1)n tanh

(
1

2
nπλ1

)
/(nπ). (22)
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Figure 7. Normalised shape of the SRF for a single layer of solid (`′ = 0) when (a)λ1 = 1, (b)λ1 = 10.

In the smouldering model of Buckmaster [10], the oxidizer concentration at the surface van-
ishes over a finite strip, the remaining surface being impermeable (Equations 14a–c). He
defines a Peclet number

PeBuck = uH/D = PeH/` (23)

where Pe= `u/D is the definition used in our paper. In (23)H is the wavelength of a shallow
smouldering wave and PeBuck is taken to be of order unity.

In order to compare Buckmaster’s results with ours, the normalised shapes of the smoul-
dering fronts forλ1 = 1,10 have been evaluated from (21) and (22). These are shown in
Figure 7 and are seen to be similar to those of Figure 4 of Buckmaster’s paper.

5.2. THE CASEY0→∞
Some simplification arises wheny0 → ∞ since thenB̃n → 0. Here (16) and (17) can be
written as

y = 1− (1− Y )(1− Z/λi), (24)

x = −(1− Y )2/(2λi)+ λi

2
(1− Z/λi)2+ 1/(2λi )− 1

2
λi + 1

2
λ1,

and the equation of the SRF is

x = 1

2
λi(1− y)2 + 1

2
λ1− 1

2
λi . (25)

Equations (24) may be solved forY (x, y). Wheni = 1, corresponding to the finite-thickness
layer,

Y (x, y) = 1− λ
1
2
1 [{(x − 1/(2λ1))

2+ (1− y)2} 1
2 − x + 1/(2λ1)] 12 (26)
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which is the result (4.16) of [9].
In (26) there is a branch-point atxB = 1/(2λ1), y = 1, andY (x,1) = 1 for x ≥ xB .

Y (x,1) increases from zero to one in the range 0≤ x ≤ xB .

6. Conclusions

Our analysis assumes that the propagation speedu′ is a known constant. In general, this must
be determined by considering the thermodynamics, chemical kinetics and material properties
in a finite reaction zone. An analysis of this type is contained in the work of Schultet al. [13]
in which oxidizer is supplied by forced convention, the gas flow and smoulder propagation
being in the same direction. In smoulder with natural convection (see Schultet al. [14])
oxidizer flows through a porous solid to the reaction front in the opposite direction to that of
the propagating front. The paper contains an analysis of the stability of the combustion wave
using both asymptotic methods and direct numerical computation. In practice, the smouldering
process is flexible enough to adapt to a wide range of oxygen supply levels. Because of this
flexibility smoulder suppression is surprisingly difficult.

The initiation of smouldering can be defined in terms of turning-point bifurcations in a
suitable parameter space (see Brindley, Jivra, Merkin and Scott [11, 12]). These bifurcations
lie between those defining the quiescent state and flaming combustion.

Although the analysis above has only been carried out to first order in the Peclet number,
the solutions possess features which are in accord with observation. The upstream influence, in
which the bounding concentration varies smoothly between its plane surface valueY = 1 and
that at the smoulder front corresponds to a folding of the reaction zone, although in practice
one would have a smooth continuous surface within the porous residue. In principle, it is
possible to extend our analysis to higher order in the Peclet number, but the nature of the
solutions would make this difficult. An exception is the casey0→∞ for which higher order
results have previously been found [9]. A possible procedure is to assume that the shape of
the front is given by the first-order problem and then obtain the next term in the expansion for
Y . The shape of the front can then be corrected with the amended value ofY .

Computed shapes of the smouldering fronts for various combinations ofλi are shown in
Figures 4, 5, 6. Whenλ1 6≡ λ2 the gradients ony = 0 are discontinuous due to the change in
fuel concentration. By definition

λi = p/si = (`u′ρ(i)f n0)/(Dρ0Y
′
0), (27)

so thatλ1 > λ2 corresponds to an upper layer richer in combustible than the lower one. For
fixed λ1, changes inλ2 have little influence on the shape in Region (1), this being approxi-
mately

x = 1

2
λ1(1− y)2. (28)

The result of Equation (10) confirms thatλ1 + λ2 is the dimensionless oxidizer flux through
the SRF and hence through the plane surfacey = 1.

In order to suppress smouldering it is important to bring the reaction front as close to the
bounding surface as possible. Figure 5 shows that this occurs with increasingλ1, although the
reaction front is stretched in thex-direction. The fire engineering implications are that sharp
changes in fuel concentration are easier to deal with than slowly changing ones.
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Fory0→ 0 our analysis reduces to smouldering in a uniform layer. A similar mathematical
problem arises in the continuous casting of a slab from a pool of molten metal (see Siegel [15])
where solutions in terms of elliptic integrals have been obtained.
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